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Abstract—The objective of this paper is to understand transport behavior in uncertain time-varying flow fields by redefining the
finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structure (LCS) as stochastic counterparts of their traditional
deterministic definitions. Three new concepts are introduced: the distribution of the FTLE (D-FTLE), the FTLE of distributions
(FTLE-D), and uncertain LCS (U-LCS). The D-FTLE is the probability density function of FTLE values for every spatiotemporal
location, which can be visualized with different statistical measurements. The FTLE-D extends the deterministic FTLE by measuring
the divergence of particle distributions. It gives a statistical overview of how transport behaviors vary in neighborhood locations. The
U-LCS, the probabilities of finding LCSs over the domain, can be extracted with stochastic ridge finding and density estimation
algorithms. We show that our approach produces better results than existing variance-based methods do. Our experiments also show
that the combination of D-FTLE, FTLE-D, and U-LCS can help users understand transport behaviors and find separatrices in ensemble
simulations of atmospheric processes.

Index Terms—Uncertain flow visualization, stochastic particle tracing, Lagrangian coherent structures.
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1 INTRODUCTION

UNCERTAIN data is widespread in various scientific
and engineering domains, such as computational fluid

dynamics, aerodynamics, climate, and weather research.
Instead of deterministic velocity vectors, an uncertain flow
field is usually represented by distributions that are derived
from experiments, algorithms, or interpolation. Although
the topic of uncertainty is being extensively studied in
some of the sciences named above, the visualization and
analysis of uncertainty still remain grand challenges in the
community.

Our focus in this paper is visualizing and analyzing
transport behavior in uncertain time-varying flow fields.
Although flow visualization is an established research topic,
with geometry-, texture-, and topology-based methods, the
visualization and analysis of uncertain datasets have not
been well developed. For 2D and small-scale 3D uncertain
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datasets, the existing techniques encode uncertainties as
additional visual channels, such as glyphs [1], [2] and tex-
tures [3]. Recently, vector field topology methods have been
extended to uncertain vector fields [4], [5], but they are not
directly applicable to time-varying datasets because vector
field topology theory is built on streamlines, not pathlines.
Uncertain time-varying datasets still are a major challenge
in flow visualization.

In this study, we extend a well-established tool for
unsteady flow analysis—finite-time Lyapunov exponent
(FTLE)—to a probabilistic framework for analyzing uncer-
tain data. The FTLE was proposed by Haller [6] and has
become a standard tool to study transport behaviors in
unsteady flow. For a certain finite-time interval, the scalar
FTLE value at a given location measures the convergence or
divergence rate between neighboring particles in the flow. It
is defined as the maximal eigenvalue of the inner product of
the gradient of flow maps. The ridges of FTLE fields can be
used to derive Lagrangian coherent structures (LCSs) [7]—
the boundaries between attracting or repelling particles in
the flow. Thus, FTLEs and LCSs can help scientists under-
stand flow transport behaviors.

The motivation of this work is to redefine traditional
deterministic FTLE-based analysis pipelines to accommo-
date uncertainty. Such stochastic formulations will allow
climate scientists to quantify the uncertainty of convergent
and divergent transport behaviors. This behavior can help
scientists understand the uncertainty of derived features
such as eddies, flow segmentation, and large-scale telecon-
nections. We view this problem from two perspectives. One
is to quantify the uncertainty of traditional FTLE values, and
the other is to measure the uncertainty in convergent and
divergent transport behaviors in order to define a single
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FTLE-like value that captures the underlying uncertainty.
The two approaches reveal different aspects of unsteady
flow uncertainties. On the one hand, the uncertainty of the
FTLE can be represented by probability density functions
(PDFs) for different locations, and further statistical analysis
and uncertainty quantification of the LCS can be conducted.
On the other hand, a generalized FTLE value can provide
an overview of major transport behaviors in the uncertain
datasets. Both techniques can help users understand the
uncertainty of the data, and their intrinsic relationships are
discussed in this paper.

Specifically, we propose two concepts: distributions of
FTLE (D-FTLE) and FTLE of distributions (FTLE-D). For
a given finite time interval τ , D-FTLE is represented as a
distribution field with 2 + n dimensions: FTLE distribution,
time, and n spatial dimensions (2 or 3 in our study). For each
spatiotemporal location, the FTLE distribution is a 1D PDF
of FTLE values. The D-FTLE is a statistical representation of
FTLE values in uncertain unsteady flow, and it can be visu-
alized with various statistical measurements interactively.

On the other hand, the FTLE-D, which has the same
dimension as a traditional deterministic FTLE, measures
differences in the advected particle distributions. It gives
a statistical overview of how transport behaviors differ in
neighboring locations, and it works better than existing
variance-based methods [8] in our experiments.

We can further derive uncertain LCS (U-LCS), which
is an n-dimensional PDF of the probability of belonging
to an LCS for each spatiotemporal point in the domain.
Ridges are extracted with (stochastic) ridge finding and den-
sity estimation algorithms. Because analytical solutions are
not available (for anything but synthetic datasets) and the
derivatives of random variables are extensively involved,
we use Monte Carlo stochastic simulations to generate the
D-FTLE, FTLE-D, and U-LCS.

We demonstrate the proposed methods in two real-
world uncertain unsteady flow datasets from the climate
and weather domain. In the first case, we use the output
data from Chen et al. [9], which quantifies the uncertainties
of temporal downsampling. Because time-varying datasets
can be extremely large to store, a common practice is to drop
time steps for further analysis; but important information
can be lost in this process. Uncertainties are generated by
downsampling, and we can analyze such downsampled
data with our tools to reveal the uncertain transport be-
haviors. In the second case, the uncertainties arise from en-
semble simulation runs of weather forecasts, and we further
visualize the surfaces in the storm regions by extracting the
U-LCS. Combined with other visualization techniques, our
method can help scientists analyze the uncertainty of the
simulation models.

In summary, the contribution of this paper is a novel
probabilistic framework for FTLE computation and LCS ex-
traction in uncertain time-varying flow fields that includes

• distributions of FTLE (D-FTLE),
• FTLE of distributions (FTLE-D), and
• a method of compositing ridge surfaces into uncer-

tain LCS (U-LCS) by using a surface density estima-
tion.

The remainder of this paper is organized as follows.
Background and basics are discussed in Sections 2 and 3,
respectively. The details of the D-FTLE, U-LCS, and FTLE-D
are given in Sections 4, 5, and 6, respectively. In Section 7
we describle the implementation and evaluate the perfor-
mance. Results are discussed in Section 8, followed by the
conclusions in Section 9.

2 BACKGROUND

In this section, we discuss the background concepts needed
for this paper and summarize related work on uncertain
flow field visualization and FTLE-based flow analysis.

2.1 Uncertain flow field visualization

Visualizing uncertain flow fields is a grand challenge in our
community, which involves two major research topics: flow
visualization and uncertainty visualization. Three major ap-
proaches to flow visualization exist—geometry-based [10],
texture-based [11], and topology-based methods [12]. These
techniques usually transform deterministic datasets into
visualizations used for various analysis tasks. Uncertainty
visualization has become a necessary component in this
process [13], [14], and much work remains to be done
to visualize uncertainty in flow fields. One may classify
existing uncertain flow visualization approaches into direct
methods and feature-based methods.

Direct methods include glyphs [1] and textures [3]
that encode uncertainty with additional visual channels.
UFLOW [15] presents a series of visual encoding schemes
to visualize the uncertainties arising from different nu-
merical integration methods in particle tracing. Flow radar
glyphs [2], which visualize the change of flow directions in
a spherical coordinate system, also incorporate uncertainty
in the glyphs. However, direct visualization methods are
usually limited to 2D or small 3D datasets; and they are not
feasible for large, complex, 3D time-varying datasets. Com-
pared with these methods, our work focuses on transform-
ing and aggregating flow field distributions into scalar fields
that can be visualized by traditional methods, irrespective of
dimensionality or scale.

Feature-based methods extract important features from
uncertain data. Usually, this process is done by extending
methods used in deterministic flow fields to uncertain data.
For example, vortex detectors such as λ2, Q-criterion, and
parallel vectors can be extended to uncertain data [16]. In
such techniques, Monte Carlo simulations are typically used
to trace the particles and compute the output variables. Ex-
tracted vortices are presented as a probability field instead
of deterministic regions or vortex lines. The method of Petz
et al. [17] is the probabilistic equivalent of local features such
as critical points. Our methods also extend deterministic
techniques to uncertain datasets and compute the U-LCS
as a probability density field.

Recently, Otto et al. [4], [5] investigated the topology of
uncertain 2D and 3D steady flow fields. However, vector
field topology is not stable and thus is infeasible for time-
varying datasets. One method for analyzing unsteady flow
topology is FTLE, which can be further used to extract LCSs.
A variance-based FTLE-like metric, the so-called FTVA, was
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proposed to analyze uncertain vector fields [8], but the
metric has two issues. First, it is based on principal compo-
nent analysis (PCA); thus, the distribution of the advected
particles is assumed to be Gaussian, which is not necessarily
true. Second, the FTVA gives a single value for each location,
which makes it impossible to extract the distribution of the
uncertain LCS. Hummel et al. [18] extend the PCA-based
variance to measure the particle divergence in ensemble
flow fields, but they make the same Gaussian assumptions
as in FTVA. In our study, we consider the distribution of
FTLE values in uncertain flows, and we produce the U-LCS
as a probability distribution.

2.2 Deterministic FTLE and LCS

The most important application of FTLE fields is to find
LCSs, which are material surfaces that separate different
fluid regions by particle movement behavior. LCSs are
usually localized as ridges of the FTLE field [19]. In our
work, we quantify the uncertainty of LCS by investigating
the distribution of FTLEs.

FTLEs and LCSs are computed as follows. Given a time-
varying flow field v(x, t), we denote the end position of the
pathline seeded at spatiotemporal location (x, t) by a point
in a flow map φ(x, t, τ), which is the solution of the initial
value problem

∂φ(x, t, τ)

∂τ
= v(φ(x, t, τ), t+ τ), and φ(x, t, 0) = x, (1)

where τ is the advection time. The definition of FTLE is
based on the gradient of the flow map

σ(x, t, τ) =
1

|τ |
log

√
λmax((∇φ)ᵀ∇φ), (2)

where∇ is the gradient operator with respect to x and λmax

computes the maximum eigenvalue of the right Cauchy-
Green deformation tensor ∇φᵀ∇φ. The ridges of FTLE
fields, which are curves and surfaces in 2D and 3D datasets,
respectively, are usually considered to be the LCS. Although
FTLE ridges are not always an indication of the LCS, this
method has been used in a wide range of applications [20].
We will generalize the concepts of FTLE and LCS to uncer-
tain unsteady flow in the following sections.

The FTLE computation is extremely expensive because
it requires tracing densely seeded particles in the flow
field, which is costly in computation, I/O, and memory
resources. Two strategies are used to accelerate FTLE com-
putation: parallelism and approximation. Nouanesengsy et
al. [21] present a parallel framework that groups parallel
processes by exclusive time spans and pipelines the seeding
of pathlines over time intervals, in order to reduce the I/O
and synchronization overhead. Guo et al. [22] subdivide
flow field data into fine-grained blocks and manage the
data access with a (pre)caching parallel key-value store,
thereby improving the I/O and memory efficiencies for
particle tracing in FTLE computation. A graph-based seed
scheduling method is proposed to compute the FTLE on
desktop machines in an out-of-core manner [23]. Instead of
computing a full-resolution FTLE field by brute force, an
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Fig. 1. Pipeline of our methods. A number of Monte Carlo simulation runs
are conducted, which trace densely seed particles stochastically. Then
D-FTLE, U-LCS, and FTLE-D are computed for interactive visualization.

alternative way to reduce the computation cost is by approx-
imating the FTLE. For example, an adaptive refinement ap-
proach can estimate the FTLE field with sparse samples [24].
Hlawatsch et al. [25] present a hierarchical advection scheme
that provides a less accurate but faster solution. Kuhn et
al. [26] evaluated various FTLE computation methods. Our
work does not depend on the particular FTLE computation
method, and we focus instead on deriving the uncertainty
from particle tracing and FTLE results.

3 BASICS

Figure 1 illustrates our methods. From the input uncertain
unsteady flow datasets, particles are advected stochastically
(Section 3.2) with a number of Monte Carlo simulation runs.
For each run and each spatiotemporal location, one single
particle is traced and labeled with the run ID. Our pipeline
has two major routes. One is to compute the FTLE for each
run individually (so-called stochastic FTLE runs) and then
generate the D-FTLE and U-LCS. The other is to compute
FTLE-D values for all runs. Statistical measurements of the
D-FTLE, such as the mean, standard deviation, entropy,
and statistical thresholding (Section 4), can be calculated for
interactive visualization. The U-LCSs are derived from the
ridges in stochastic FTLE fields, and we composite ridges
from all runs into a scalar-valued U-LCS field by curve and
surface density estimation (Section 5). For the FTLE-D, we
also visualize ridges similarly to deterministic LCS. Users
can use different tools to visualize the uncertain unsteady
flow, in order to find separatrices and understand transport
behaviors.

We use a synthetic uncertain double-gyre dataset for
illustration in following sections. The original deterministic
double-gyre dataset1 is a closed-form time-varying vector

1. http://mmae.iit.edu/shadden/LCS-tutorial/examples.html
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(a) (b) (c)

(x₀, t) φ(x₀, t, τ)

(x₁, t) φ(x₁, t, τ) (x, t)

Φ(x, t, τ)

(x, t)

φ⁽⁰⁾(x, t, τ)
φ⁽¹⁾(x, t, τ)
φ⁽²⁾(x, t, τ)
......

Fig. 2. Deterministic flow map φ (a), stochastic flow map Φ (b), and
stochastically traced particles φ(i) (c).

field. We arbitrarily added Gaussian noise to its u and
v components of the velocity. More details about further
analysis of this dataset are given in Section 8.1.

3.1 Definitions

The visualization and analysis of both the FTLE-D and D-
FTLE are based on a stochastic flow map (SFM). We use
the SFM Φ(x, t, τ) to encode the distribution of advected
particles seeded from the spatiotemporal location (x, t).
In a deterministic flow map, each spatiotemporal position
contains the ending position of a particle seeded at that
position. The stochastic flow map contains a distribution
of ending positions instead of a single end position. The
PDF of the SFM, ρΦ(x, t, τ ;x′) (x′ ∈ Rn), is a function
at each position in the flow map, or a distribution field. As
opposed to a deterministic flow map φ, the SFM for a given
spatiotemporal location is a random variable obeying a PDF,
instead of a single point (as illustrated in Figure 2).

Based on the definition of the SFM, we can extend Eq. 2
to generalize the FTLE to its stochastic version (stochastic
FTLE):

Σ(x, t, τ) =
1

|τ |
log

√
λmax((∇Φ)ᵀ∇Φ), (3)

where ∇ is the gradient operator over the space. In this
study, we visualize and analyze the distribution of the
random variable Σ (the D-FTLE) as (ρΣ(x, t, τ ;σ), σ ∈ R).

Moreover, we may generalize the definition of LCS to
get its stochastic counterpart. For a given spatiotemporal
location, the U-LCS value is the probability of being a ridge
of a stochastic FTLE:

L(x, t, τ) = Pr(R(Σ(x, t, τ)) = 1), (4)

where R is the ridge detection operator. In this study, we
use C-Ridges [27] definitions for R, because C-Ridges are
usually used to extract LCS in previous studies [28].

In addition to the D-FTLE and U-LCS, we compute the
FTLE-D, which takes the same form as a deterministic FTLE.
Analogous to the FTLE, which is defined on the gradient of
the flow map, the FTLE-D characterizes the “gradient” of
SFM distributions by measuring the differences of PDFs in
neighboring regions. Formally, we define the FTLE-D as

σ̂(x, t, τ) =
1

|τ |
log

√
λmax(E[∇Φ]ᵀE[∇Φ]), (5)

where E[·] is the expectation operator. We also visualize
the ridges of σ̂ compared with the deterministic LCS. The

concepts and computation of the D-FTLE, U-LCS, and FTLE-
D are further explained and detailed in the remainder of this
paper.

Because analytical solutions of the SFM and its deriva-
tives are unavailable in practice, we conduct a number of
stochastic Monte Carlo simulations to generate numerical
solutions. The FTLE-D, U-LCS, and D-FTLE are directly
estimated from the stochastically traced particles. In the rest
of this section, we briefly describe the stochastic particle
tracing process.

3.2 Monte Carlo particle tracing
Both the FTLE-D and D-FTLE are based on stochastic par-
ticle tracing results. A number of Monte Carlo simulation
runs are conducted, and then the traced particles are labeled
with the run ID for further use. Formally, we denote the
uncertain flow field as V(x, t), where (x, t) is the spatiotem-
poral location. We wish to know the end location of the
particle seeded at (x, t) after a period of time τ . This process
can be turned into a stochastic differential equation system:

dΦ(x, t, τ) = V(Φ(x, t, τ), t+ τ)dτ + B(x, t+ τ)dξτ , (6)

where B is the disturbance. If V obeys a Gaussian distribu-
tion, Euler-Maruyama methods or stochastic Runge-Kutta
methods can be used to solve this system. Because V is
usually non-Gaussian in real-world applications, we use
Monte Carlo simulation to estimate the flow map instead:

φ(i)(x, t, (j + 1)∆t) = v(i)(φ(i)(x, t, j∆t), t+ j∆t)∆t, (7)

where i is the Monte Carlo run ID, φ(i) is the particle
position of jth integral step of the ith run, and v(i) is a
random sample of V. ∆t is the time for each integral step.
The number of runs is adaptively determined in an iterative
manner. In each iteration, we conduct a number of runs,
and the iteration stops if the output D-FTLE field does
not statistically significantly change anymore. Although the
Monte Carlo simulation is expensive, the performance could
be boosted with general-purpose graphics and other accel-
erator hardware. We use CUDA and Nvidia GPUs in our
implementation.

4 DISTRIBUTIONS OF FTLE (D-FTLE)
As we defined in Section 3.1, the D-FTLE is a distribution
field of scalar FTLE values. For given spatiotemporal lo-
cation (x, t) and advection time τ , the D-FTLE is the PDF
of the stochastic FTLE Σ. In practice, directly visualizing
the D-FTLE ρΣ(x, t, τ ;σ) is difficult because it is a high-
dimensional scalar function defined on Rn+3. Visualizing
distribution fields has been studied for 2D datasets [29],
but it is still challenging to visualize 3D D-FTLE data with
two time dimensions t and τ . Instead, we visualize D-
FTLE statistics with our tool. Users can also query the
distributions at specific points by brushing.

The computation of the D-FTLE is achieved by Monte
Carlo simulations. We first compute the FTLE field
σ(i)(x, t, τ) for each individual Monte Carlo run in the
stochastic particle tracing process and then bin the FTLE



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, APRIL 2016 5

(a) stochastic FTLE runs (b) D-FTLE mean (c) D-FTLE variance (d) D-FTLE entropy (e) D-FTLE Shapiro-Wilk test

(f ) D-FTLE histograms (g) FTLE-D thresholding (γ=0.2) (h) FTLE-D (i) FTLE-D ridges (j) FTVA

...

...

(k) ridges of stochastic FTLE runs (l) U-LCS (m) FTLE (n) FTLE thresholding (γ=0.2) (o) FTLE ridges

0 0.4 0 0.5

Fig. 3. Visualization of synthetic uncertain (a-m) and deterministic (n-p) double-gyre data with various methods. The time t and advection time τ
are 0 and 15, respectively. The darker color indicates the larger values in the images, except that (e) is inversed.

values for each spatiotemporal location into a 1D histogram.
The D-FTLE is stored as a high-dimensional array for further
interactive visualization.

We provide several statistical measures for visualizing
the D-FTLE, including mean, standard deviation, informa-
tion entropy, normality test (Shapiro-Wilk p-value), and
statistical thresholding (described below). Among these sta-
tistical measures, mean and standard deviation provide
basic properties of the distribution; information entropy
quantifies the complexity of the distribution. Shapiro-Wilk
p-value measures how much the distribution is Gaussian.
Figures 3(b)-(e) demonstrate these metrics with synthetic
data, and we observe that regions with richer flow features
usually have higher entropies and Shapiro-Wilk p-values.
Based on the visualizations, users can probe the histogram
for specific locations.

Statistical thresholding is another tool for measuring the
likelihood of an FTLE value greater than a given thresh-
old. In FTLE-based analysis, higher FTLE values indicate
the emergence of LCS. The statistical thresholding gener-
ates comparable results to thresholding deterministic FTLE
fields. Formally, statistical thresholding is defined as

T (x, t, τ) = Pr(Σ|Σ(x, t, τ) ≥ γ) = 1−
∫ γ

−∞
ρ(x, t, τ ;σ)dσ,

(8)
where γ is the given threshold. For a discrete D-FTLE,
the integral can be calculated by summing the histogram
bins whose values are smaller than γ. Figures 3(g) and
(h) present statistical thresholding results for the uncertain
synthetic double-gyre data with different thresholds. This
result is comparable with the FTLE thresholding from the
deterministic data in Figure 3(o). The statistical thresholding
visualizes the probability of being high FTLE values, which
incorporates the data uncertainty.

5 UNCERTAIN LCS (U-LCS) EXTRACTION

LCSs, surfaces that separate attracting or repelling particles
in unsteady flow are usually indicated by FTLE ridges.

Depending on the dimensionality, the ridges are curves and
surfaces in 2D and 3D datasets, respectively. An uncertain
probabilistic version of the LCS was defined in Section 3.1,
and we detail the U-LCS computation in this section. In an
uncertain setting, the output of LCS-finding algorithms is a
probability density field. The values in this field represent
the probability of sitting on a ridge curve or surface. Because
the gradient of stochastic FTLE fields is involved in the
ridge detection, this process is also estimated by a stochastic
process. As shown in the pipeline in Figure 1, after getting
an ensemble of stochastic FTLE runs, ridges are detected for
each Monte Carlo run, and then they are composited into a
U-LCS field by density estimation.

The ridge detection algorithm is applied to each Monte
Carlo run. The inputs are the individual FTLE runs σ(i),
and the outputs are the ridges of the scalar fields R(σ(i)).
We follow the previous scale-space methods [28] to extract
C-Ridges [27] in the FTLE fields. The minor eigenvectors of
Cauchy-Green deformation tensors ∇φ(i)ᵀ∇φ(i) are used to
determine the transverse directions in the ridge detection.
We iterate every cell in the grid and then connect the
line segments (triangles for surface) into curves (surfaces)
with the marching ridges algorithm [30]. Figure 3(l) and
Figure 4(a) show the ridge detection results for several FTLE
runs.

The ridges from all FTLE runs are then composited
into the U-LCS field, which is achieved by curve (surface)
density estimation. To do so, we generalize kernel density
estimation from discrete points to curves and surfaces in
the space. For 1D curves, this problem has been studied by
Lampe and Hauser [31] with approximations. However, it
is more challenging to estimate densities from curves in the
2D plane and surfaces in 3D space, because convolutions
between the kernel functions and curve (surface) patches
are usually not analytical. Instead, we propose an alterna-
tive solution based on smoothed particle hydrodynamics
(SPH) [32] detailed below. In Figure 3(m) and Figure 4(b)
show the density estimation results for curves and surfaces,
respectively. Although the ridges extracted from single runs
contain some artifacts due to randomness of the Monte
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(a) (b)

...

(a)

Fig. 4. U-LCS extraction by curve/surface density estimation: (a) ridges
extracted from single Monte Carlo runs; (b) U-LCS, surface density
estimation from (a).

Carlo process, the density estimation results are smooth.
The artifacts are suppressed because the results are the
composition of a number of stochastic runs.

A generalized SPH model is used to estimate the densi-
ties of ridge curves (surfaces). In the traditional SPH model
for discrete points, the density of an arbitrary location r is
the convolution of an arbitrary kernel function with discrete
particles inside a sphere centered on r:

ρ(r) =
Nb−1∑
j=0

Mjω(|r− rj |, h), (9)

where Nb is the number of points in the sphere, Mj is the
mass of each particle, h is the radius of the sphere, and ω
is the value of the kernel function. Notice that the particle
masses are identical in this study. The extension to line
(surface) density estimation can be written as

ρ(r) =
Nb−1∑
j=0

∫
Dj

ω(|r− rj |, h)ds, (10)

where Dj is the jth line or surface intersected with the
sphere and ds is the infinitesimal piece of Dj . However,
the integral usually does not have an analytical solution for
common kernel functions, such as a Gaussian kernel and
1/d2 (while the line integral for a 1/d2 kernel function has
an analytical solution for curves, it does not for surfaces).
In this study, we use a simple and commonly used kernel
function for the density estimation:

ω(d, h) =

{
1/πh2 or 3/4πh3, if d ≤ h
0, otherwise.

(11)

As shown in Figure 5, with this kernel function, the den-
sity estimation result is essentially the length of lines in
the sphere and the area of surfaces in the sphere for 2D
and 3D data, respectively. The normalization factors 1/πh2

and 3/4πh3 are the inversions of area/volume of 2D/3D
datasets. The cost of this method is low, and it produces
robust and smooth results. Users need to specify a proper
kernel size h as a parameter; we use h = 2 to generate the
results in our experiments.

(a) (b) (c)

h h

Fig. 5. SPH-based density estimation for points (a), curves (b), and
surfaces (c).

(a) (b)
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Fig. 6. Comparison between FTLE-D (a) and FTVA (b).

6 FTLE OF DISTRIBUTIONS (FTLE-D)
Unlike the D-FTLE, the FTLE-D produces a scalar field of
the same form as a conventional FTLE. As defined in Eq. 5,
for a given advection time τ , the FTLE-D characterizes the
“averaged” difference of SFM distributions in neighboring
regions. We use the expectation of the flow map gradient
E(∇Φ) to measure the difference.

Because the gradient relies on the random variable Φ,
the computation of FTLE-D is also based on Monte Carlo
simulations. The expectation of ∇Φ can be estimated by
averaging the gradient of flow maps in each run:

E[∇Φ] ≈ 1

m

m−1∑
i=0

∇φ(i), (12)

where ∇φ(i) can be estimated by the central difference
method for each individual run. The 2D case is shown in
Figure 6(a). The x-component of E[∇Φ] is E[Φ1−Φ4]/2∆x,
where Φ1 − Φ4 can be approximated by the stochastically
traced particles 1

m

∑m−1
i=0 φ

(i)
1 − φ

(i)
4 . Likewise, we can com-

pute the other components of E[∇Φ] similarly.
The FTVA [8], which is a variance-based FTLE-like

metric, is an alternative method for analyzing uncertain
unsteady flow. The FTLE-D and FTVA are fundamentally
different. First, FTLE-D is a direct generalization of deter-
ministic FTLE, but the FTVA is not. As shown in Figure 6,
the FTLE-D is based on the gradient estimation of SFMs,
while FTVA is derived from the first principal component
of the end points traced from a small parcel, which is not a
gradient at all.

We believe that our method is conceptually and compu-
tationally closer to the traditional deterministic FTLE. First,
when the “ground truth” of the uncertain data is available
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in our experiments (double-gyre and Isabel data), the FTLE-
D values are similar to those of the deterministic FTLE.
For uncertain and deterministic double-gyre data, the root-
mean-square deviation (RMSD) and peak signal-to-noise
ratio (PSNR) of the FTLE-D and FTLE are 0.013 and 29.42
dB, respectively. However, the scale of the FTVA output
values is different from that of the FTLE-D and FTLE, which
makes it impossible to conduct a quantitative comparison
between the FTVA and FTLE or FTLE-D. Second, the FTVA
inherently assumes that the distribution of end points is
Gaussian (due to the PCA), whereas the FTLE-D does not
make any such assumptions. SFMs are often non-Gaussian,
especially in divergent flow regions; the FTVA blurs features
in such regions. As shown in Figure 3, the FTLE-D (i) is
closer to the deterministic FTLE (n) compared with the
FTVA (k) in the circled region. We observe similar results
using uncertain Isabel data (all in the next section).

7 IMPLEMENTATION AND PERFORMANCE

We use GPUs to accelerate the most computation-intensive
algorithms in our framework, including the stochastic par-
ticle tracing, FTLE-D, D-FTLE, and U-LCS computation. In
our current implementation, we parallelize over seeds in
the stochastic particle tracing. For every Monte Carlo run,
each thread computes the final position of the seed, which is
stored on the GPU memory for further use. For each seed lo-
cation, the D-FTLE value is immediately computed after the
particle tracing. The FTLE values for each run are calculated
and summed to FTLE-D histograms by using atomic oper-
ations on the shared memory. U-LCS computation consists
two parts: ridge detection and density estimation. We filter
each cell in the domain by checking if it intersects a ridge
line/surface; then, the line segments/surface patches are
generated and stored on the GPU memory. The densities on
each node are then calculated by per pixel/voxel operations.
All the algorithms are highly parallel, and we do not need
to copy intermediate data back and forth during the com-
putation. In order to handle large time-varying data, an out-
of-core strategy is used when the total data size is greater
than the GPU memory. Parallelism on supercomputers will
be our future solution to handle even larger datasets.

The benchmark performances of the algorithms are listed
in Table 1. The prototype system is implemented with
C++ and CUDA. The benchmark platform is a workstation
equipped with two Intel Xeon E5620 CPUs (2.40 GHz), 12
GB RAM, and an Nvidia Tesla K40c GPU. The GPU contains
2,880 CUDA cores and 12 GB memory. Compared with the
CPU performance, the GPU implantation typically runs 100
times faster in our experiments.

8 RESULTS

We apply the proposed methods to three uncertain unsteady
flow datasets: synthetic double-gyre data, Hurricane Isabel
data, and and ensemble WRF simulation data. The uncertain
double-gyre data are generated by adding Gaussian noise
to an existing and well-known dataset. The double-gyre
results are already shown in previous sections to describe
the algorithms, and we further conduct sensitivity analysis
on this data in this section. Uncertainty in the Hurricane

(a) (b)

(c) (d)

m=20, h=3 m=200, h=3

m=100, h=1 m=100, h=3

Fig. 7. U-LCS results of synthetic uncertain double-gyre data with differ-
ent Monte Carlo run numbers and kernel sizes.

Isabel data stems from temporal down-sampling errors [9].
The ensemble WRF data is from a real-world weather
simulation, and the uncertainties result from the ensemble
member variances.

8.1 Synthetic Uncertain Double-Gyre Data

We synthesize the uncertain double-gyre data for illustrat-
ing and benchmarking the algorithms in this paper. The
original double-gyre dataset is a closed-form time-varying
2D vector field defined on [0, 0]× [2, 1]. In our experiments,
we arbitrarily inject Gaussian noises (N(0, 0.022)) into the
u and v components of the vector field. Particles are seeded
on a 401 × 201 Cartesian grid, and they are stochastically
traced to generate further results.

Figure 3 shows the visualization results for both the
uncertain and deterministic double-gyre data. Double-gyre
results also appear in previous sections; in this section,
we further analyze the sensitivity to different parameters
used to generate the U-LCS field. Figures 7(a) and (b) are
generated with two different numbers of Monte Carlo runs.
Together with Figure 3(m), we can see that more runs lead
to smoother results. Of course, more resources and time are
required with increasing number of runs. In our algorithms,
we adaptively increase the numbers of runs until the output
D-FTLE does not significantly change.

We also compare different kernel sizes used for density
estimation in Figures 7(b), (c), and (d). In general, larger
kernel size leads to smoother U-LCS, but fine details may be
hidden in neighboring features. In our experiments, we use
h = 2 pixels (voxels) to generate our results. Currently, users
manually choose the kernel size h; we do not investigate the
automatic selection of h in this paper.

8.2 Temporally Down-Sampled Hurricane Isabel Data

A common practice to alleviate the high storage cost in sci-
entific simulation is to skip time steps and store only a small
portion of the output. However, important information can
be lost in the discarded data, and temporal downsampling
can lead to data uncertainty. Chen et al. [9] proposed a
method using quadratic Bezier curves to interpolate the
unstored data; the uncertainties are modeled as Gaussian
interpolation errors. In this experiment, we view the original
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TABLE 1
Data specifications and timings: tp, tf , tl, and td are timings (in seconds) for stochastic particle tracing, stochastic FTLE computation, uncertain

LCS computation (density estimation), and FTLE-D computation, respectively.

Dataset Uncertainty Resolution Performance (CPU) Performance (GPU)
Source tp tf tl td tp tf tl td

Double gyre Noise N/A (analytical) 4.60k 18.7 60.0 0.28 10.0 0.05 1.00 0.06
Isabel Down-sampling 500 × 500 × 100 × 4 447k 17.2k 6.30k 1.61k 4.76k 25.0 0.56k 25.8
WRF Ensembles 1799 × 1059 × 40 × 15 308k 13.1k 8.36k 1.21k 3.5k 22.0 0.47k 19.7

(a) D-FTLE mean (b) D-FTLE variance (c) D-FTLE entropy (d) D-FTLE Shapiro-WIlk test

(e) D-FTLE thresholding (γ=0.48) (f ) U-LCS (g) FTLE-D (h) FTLE-D ridges

(i) FTVA (j) FTLE (k) FTLE thresholding (γ=0.48) (l) FTLE ridges

ance opy iro-WIlk test

sholding (γ=0.48)

olding (γ=0.48)

Fig. 8. Visualization of uncertain (a-j) and deterministic (k-l) Hurricane Isabel data with various methods. The darker color indicates the larger values
in the images, except that (d) is inversed. The orange hues are used to visualize FTLE-like metrics (D-FTLE statistics, FTLE-D, and FTVA, etc.),
and green hues are used to visualize LCS-like metrics (FTLE ridges, FTLE thresholds, and U-LCS, etc.)

Hurricane Isabel dataset as the “ground truth” from simu-
lation output, and we use this method to obtain the down-
sampled version for uncertain FTLE and LCS analysis.

The original and deterministic Isabel dataset is courtesy
of the IEEE Visualization Contest 2004. The spatial resolu-
tion is 500× 500× 100, and there are 48 time steps (hourly
average) stored in separate files. Three wind field vector
components U, V, and W are used in this experiment. The
down-sampled Isabel dataset aggregates every 12 time steps
into one. In each down-sampled frame, the quadratic Bezier
curve parameters and the error distributions are stored.

Figures 8(a)-(i) shows the visualization results of down-
sampled data, and we also show the results for the orig-
inal data in Figures 8(j)-(l) for reference. The time t and
advection time τ are 24 and 6 (in hours), respectively. From

the statistics of D-FTLE in (a-e), we can see that the FTLE
values, as well as the uncertainty of FTLE (measured by
standard deviation) are higher near the hurricane eye. From
the entropy and Shapiro-Wilk test, we also observe that
the D-FTLE values are highly non-Gaussian. The U-LCS is
shown in (f), and we can see the distribution of separatrices
and their uncertainty.

In addition, we compare the FTLE-D and FTVA with
the FTLE field derived from the original data. The FTLE-D
gives an overview of the uncertain unsteady flow, which is
directly comparable with traditional and deterministic FTLE
fields. We can see that the FTLE-D (g) and the deterministic
FTLE (j) are similar, as are their ridges in (h) and (l). Some
details in the FTLE-D are blurred because of the data down-
sampling, but we can still distinguish the main structures of
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(a) (b)

Fig. 9. Visualization of ensemble WRF simulation data: (a) FTLE-D, (b) U-LCS.

the data. The RMSD and PSNR of the FTLE-D and determin-
istic FTLE are 0.057 and 23.3 dB in this experiment. Com-
pared with the FTVA, the FTLE-D captures the hurricane
wall details more authentically. As discussed in Section 6,
the FTVA and FTLE are not numerically comparable; hence,
we can make only visual qualitative observations about the
FTVA without being able to quantify its difference compared
with the FTLE and FTLE-D.

Meteorologists with whom we discussed the visualiza-
tion results confirmed that all visualizations, based only
on wind components, show the convective bands of Isabel
remarkably well. Vertical motions within the spiral arm,
which extends up the east coast, separate some pathlines
to the top of the atmosphere while leaving others near
this oringinal level. Because of the uncertainty of updraft
and downdraft features, small changes in initial conditions
create an uncertain separatrix around the edge of updraft
and downdraft cores, as shown in the U-LCS, and in the
ridges of the FTLE-D show good spatial coherency.

8.3 Ensemble WRF Simulation Data
The National Weather Service runs a version of the Weather
Research and Forecasting (WRF) model called the High
Resolution Rapid Refresh (HRRR) model [33]. HRRR com-
bines a well-tested configuration of WRF with a gridpoint
statistical interpolation scheme for assimilating NOAA and
other observations. HRRR is run every hour and produces
a forecast out to 16 hours. It is available to the public via
Unidata’s THREDDS Data Server.

We use an ensemble of simulation output for analy-
sis, and we model the uncertainty of the wind field by
their averages and standard deviations on each grid point
across the ensemble members. The resolution of the grid
is 1799 × 1059 × 40, and we use 15 hourly average data
and 10 ensemble members for the experiment. The particles
are seeded on a half-resolution grid (900 × 530 × 20). The
starting time of our analysis is 00:00:00 UTC, August 27,
2015, and the advection time τ is 5 hours. The U-LCS and
FTLE-D visualization results are shown in Figure 9. As in
the previous section the visualizations highlight the edges
of areas with vertical motion.

Feedback from the scientist confirms that the U-LCS and
FTLE-D are greatest in areas of upward and downward
motion. This is driven by the topography and variability

in the land surface of the continental U.S. as well as the
scale of synoptic weather patterns. In this case there are
four distinct zones: on-shore flow from the Pacific being
pushed over the Cascade mountains, a baroclinic zone (cold
front) stretching from Oklahoma up into the Dakotas, and
two unstable trough regions over the midwest and east.
Given that the only inputs were wind vectors, the visual-
izations highlight unstable areas, and the techniques give a
quantitative and mathematically robust way to show three-
dimensional uncertain flow in an easily understood manner.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we generalize and redefine the concepts of
the FTLE and LCS to visualize and analyze uncertain time-
varying fields, in order to better understand uncertain trans-
port behaviors. Three tools are presented—D-FTLE, FTLE-
D, and U-LCS. The D-FTLE, which analyzes the uncertainty
of FTLE values, is visualized with various statistical mea-
surements. The FTLE-D aggregates the traced particle diver-
gence and gives a statistical overview of uncertain transport
behaviors. The U-LCS further quantifies the uncertainties
of finding LCSs. Experiments show that the proposed tools
can help users understand transport behaviors and find
separatrices in real-world atmospheric simulations.

The two concepts of D-FTLE and FTLE-D are related
but differ from each other. We believe that both are useful.
The D-FTLE is a distribution field that stores histograms
for every location, while the FTLE-D is a scalar field that
can be compared with the FTLE. The D-FTLE cannot be
directly visualized because of its high dimensionality, so we
provide various statistical measurements for interactive ex-
ploration. Conversely, the FTLE-D can be directly visualized
with pseudocolors or volume rendering, and it provides
better results than existing variance-based methods do, as
discussed in Section 6. In addition, the U-LCS, which is the
probabilistic field of finding the LCS, can further help users
understand transport behaviors and find separatrices.

Future work will entail reducing computation time and
extending to large-scale datasets. Adaptive sampling tech-
niques could be used to reduce the amount of particle
tracing, but further efforts are needed to understand addi-
tional uncertainty that would result. Our method can also
be extended to parallel environments, in order to visualize
and analyze very large datasets.
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